
ORBIT --A Prototype Software Maintenance/Development

Process Programtning Meta-Environment

Shehab A. Gamalel-Din, Leon J. Osterweil

CU-CS-428-89 October 1989

Department of Computer Science
Campus Box 430
University of Colorado@ Boulder
Boulder, Colorado 80309-430

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
OCT 1989 2. REPORT TYPE

3. DATES COVERED
 00-00-1989 to 00-00-1989

4. TITLE AND SUBTITLE
ORBIT --A Prototype Software Maintenance/Development Process
Programtning Meta-Environment

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Colorado,Department of Computer
Science,Boulder,CO,80309

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

32

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Orbit -A Prototyp€ Software l\1aintenance/Developl'rent
Process Prograrrnri.ng Meta-EnvironiiEnt

Shehab A. Gamalel-Din

University of Colorado at Boulder
Department of Computer Science

Boulder, Colorado 80309

Leon J. Osterweil

University of California at Irvine
Department of Information and Computer Science

Irvine, California 92717

In this paper we introduce Meteor, an executable software process
modeling formalism, which is designed around the idea of a process­
centered software lifecycle paradigm. We also introduce Orbit, the meta­
environment that supports the development of Meteor models.

Every environment should incorporate at least an implicit and
preferably explicit model of the process it supports, and hence no single
fixed environment can be expected to satisfy all users' needs. Users need
to be able to adapt their processes and hence tailor their environments.
Meteor is a process rnodeling formalism which captures most of the capa­
bilities needed for modeling both static and dynamic views of software
processes. Meteor is not only a process modeling facility but also an
environment integration mechanism and a virtual machine for executing
process models. The interconnection model supported by Meteor not
only suggests a new model of software development but also proposes a
facility for propagating and automatically manipulating maintenance
requests applied to the model. Meteor components are reusable, pro­
grammable, and self adaptable.

The Orbit meta-environment prototype is designed to support
software environment development by modeling of underlying develop­
ment processes, using the Meteor formalism. Orbit applies main terrance
techniques in developing process environments.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR AND DO
NOT NECESSARILY REFECT THE VIEWS OF THE NATIONAL SCIENCE FOUN­
DATION

Orbit -A Prototype Software lvlaintenance/Develop~nt
Process Progrannr:ing Meta-Environ~nt

Shehab A. Gamalei-Din

University of Colorado at Boulder
Department of Computer Science

Boulder, Colorado 80309

Leon J. Osterweil

University of California at Irvine
Department of Information and Computer Science

Irvine, California 92717

1. Introduction
Providing adequate support for developing and maintaining high quality software

is a critical need. While environments to effectively support software development are
now emerging, they provide only limited and incidental support for maintenance. Most
people believe that "improving development improves maintenance," and that, there­
fore, software development environments also support maintenance. We believe that
environments to support maintenance have additional and different needs. Because
main terrance varies so widely in conceptualization and practice, it seems unlikely that
any single environment (and certainly not one designed to support development) can
satisfy all of these needs [Gamal 88-b].

A maintenance environment must be unusually flexible and extensible in order to
meet the requirements imposed by different development processes. Maintainers need
to be able to customize their environments by tailoring them and integrating new tools,
and they also need facilities to support incremental adaptation of the environment itself
to meet the continuous evolution of external conditions. We believe that allowing users
to tailor and continuously change their environments is equivalent to allowing for the
modeling of the processes which are to be supported by that environment. Thus we
conclude that an effective maintenance environment should be based upon the notion of
process modeling.

Process modeling helps maintenance in at least two key ways. First, if mainte­
nance process models are sufficiently tangible and precise, they suppor.t process monitor­
ing and evaluation that leads to adaptation and improvement. Second, explicit
development models can be used to help capture development process information
which materially facilitates the understanding and evaluation phases of maintenance
[Fay 85].

Process programming [Osterweil 86, 87, Gamal 88-c] is a process modeling tech­
nique that is based on the notion that software processes should be considered to be
software themselves, and that they can be explicitly modeled and programmed in the
same ways that software products can. This implies that process programs themselves
need support environments for their development and execution. That is, we need
environments to support developing, activating, evaluating, and maintaining environ­
ments. Environments of this sort have been called meta-environments, [Sorenson 88].
Meta-environments support the tailoring of an environment by adjusting its
specifications, within certain bounds. The environment thereby produced falls within a
certain class which is implicitly defined by the meta-environment designer. Process

- 2 -

programming suggests using programming language features to specify this class. Thus
programming techniques are used to explicitly model the maintenance process to be
supported by the environment. In this sense process programming is like conventional
application programming. On the other hand, software processes entail very long term
execution, require persistent object manipulation, involve careful specification of
human-computer interactions, and must be dynamically customized and evolved. These
are important characteristics in distinguishing process programs from applications pro­
grams. Our efforts to understand and effectively model these distinctions have led to
new perspectives on maintenance as a process and to an improved model of the entire
software lifecycle [Carnal 88-c) - namely, the process-centered software lifecycle para­
digm - which unifies development and maintenance for both products and processes.
Supporting such a paradigm in the form of a meta-process environment is the main
theme of this paper.

Section 2 gives a brief description of some of the essential characteristics of known
software environments. This discussion is aimed at focusing on the failures of known
environments in meeting important requirements and on those features which we feel
are needed for process programming environments. Section 3 of this paper discusses the
benefits of the process-centered life cycle paradigm and characterizes maintenance from
the perspective of process programming. It also highlights some of the demanding
characteristics of a process programming support environment. In section 4 we in tro­
duce Meteor, a process modeling facility which is the core component and virtual
machine of the Orbit environment as well as its major integration facility. Meteor is a
programmable information flow- based tool for constructing environment prototypes. It
provides automatic propagation and interchange of information between the different
interdependent environment model components. Section 5 introduces the high level
architecture of Orbit, the proposed meta-process environment prototype. Orbit supports
both development and maintenance of process environments throughout their process­
centered lifecycle. It also supports development as an advanced maintenance process.
Section 6 presents a summary and some conclusions.

- 3-

2. Background and Related Work
Early software support environments have had numerous severe limitations. They

have been costly to develop, they have been hard to modify, they have implicitly sup­
ported relatively fixed processes, they have focussed on restricted aspects of the software
lifecycle, and few have addressed maintenance.

Perhaps the best known and most numerous of these past environments have been
Language-centered environments, such as Interlisp [Teitelman 81], and Smalltalk [Gold­
berg 84]. In these systems both the environment and the application program are
embedded in the same address space as a single monolithic system. This makes all the
features of the environment available to the application as building blocks. These
environments support coding very well, but are ill suited to support phases other than
coding. Such environments support maintenance in different ways. They provide main­
tainers with program browsers to examine program structure and interactively deter­
mine the scope of a change, however the user is fully responsible for determining his/her
browsing algorithm. Furthermore, incremental interpretation and dynamic linking allow
incremental implementation. The portability of application programs developed in
language-centered environments is very poor because the programs are highly depen­
dent upon, and integrated to, their environments. In addition, they are language
specific and impossible to extend to cover phases other than coding.

Structure-oriented programming environment generation systems (such as the
Cornell program synthesizer [Teitelbaum 81], and Gandalf [Habermann 86]), are
language independent and highly portable, yet still support only the coding process.
The graphical representations of program structures which they provide are very useful
in both design and maintenance. Manipulating these program structures seems much
easier and less error prone than manipulating code, for maintainers who are rarely
involved in program development. The process supported by structured-oriented
environments is difficult to extend to support other lifecycle phases, however, and so is
the accommodation of new tools.

Toolkit environments, such as Unix, on the other hand, use operating system facil­
ities to glue tools into collections. The intent is to provide a language-independent
environment that supports multiple languages with appropriate tools. Such environ­
ments allow a high degree of tailoring but provide little process-based management of
the use of these tools. Furthermore, they have a very simple data model for tool
interaction and persistent object storage. No structure or semantic information is
recorded with the data which results in tools with few incremental processing capabili­
ties. Thus, although maintenance tools may be designed and integrated into such
toolkit environments, these environments do not themselves provide much active assis­
tance to the tools for maintenance of large systems. The simple data model of tool
interconnection eases the integration of new tools into the environment, but process
modeling and tool integration are considered the user's responsibility. Process modeling
(and hence process environments) entails the integration of processes which interact
with each other in complex ways, and therefore require highly structured data models.
These data models need more advanced data and object management than those found
in toolkit environments.

Method-based and CASE environments (e.g. VDM-based environments [Terwil­
liger 87] and IDE [IDE]) compensate for the loose coupling of tools in toolkit environ­
ments by representing a particular process based on a specific fixed development
method which is to be used by individual developers in phases such as requirements
analysis, specification, and design as well as in product and project management. Suc­
cessful method-based environments have an underlying theoretical model against which
a particular process description can be verified. Processes modeling semiformal methods,
such as SADT, CORE, PSL/PSA, and SREM, as well as more formal methods such as
those focused on Petri nets, state machines, and VDM, all exist. None of these methods

- .-t -

support all program development phases.
Although meta-environments [Sorenson 88] have been created to allow tailoring

method-based environments within a predefined specific framework, they are still tied to
one or two phases of the development cycle. Meteor provides a more flexible method for
tailoring processes which can then, moreover, be viewed from different perspectives. In
fact, the Meteor formalism seems able to cover the capabilities of all the methods dis­
cussed above.

In summary, different classes of environments use different techniques to achieve
different goals and benefits. Full integration is achieved in language-centered environ­
ments by integrating the application with its environment into a single monolithic sys­
tem. Although high power and increased programming productivity are observed, poor
portability is expected. Porta bill ty is improved in structure-oriented environments
which deal more with program structures. This approach also leads to increased main­
tainability and modifiability, but is poorly sui ted to supporting integration of new tools.
Toolkit environments provide better support for integrating new tools, but rely upon a
very naive notion of data types and incorporate no process representation at all. Sim­
ple processes exist in CASE environments in the form of limited and inflexible methods
which aid one phase of the software cycle only. Furthermore, CASE environments do
not effectively integrate the specification of human activities with the specification of
tool supported activities. In addition, none of these environments provides explicit
representation of the underlying process, if it exists at all, nor allows tailoring or adapt­
ing the process or the environment itself.

Process programming environments offer the promise of being more flexible and
providing a broader range of support for the software development and maintenance
processes. They provide mechanisms for supporting not only the production phases
but also process planning, scheduling, control, and resource management in a highly
flexible and programmable way. Above all, they allow tailoring and adapting the expli­
citly represented underlying process, and hence tailoring the environment itself to
achieve evolving goals and meet changing constraints.

3. Process Progranuning and the Process-Centered Software Lifecycle
We seek to build environments capable of effectively supporting software mainte­

nance, by making these environments tailorable, flexible, and extensible. Our
approach is to support the explicit representation of maintenance processes as process
programs which are to be interpreted by our environment. These process programs are
to be developed by process engineers applying maintenance techniques with the help of
the environment itself, and are to be maintained (in order to yield the flexibility we
desire) with the help of the environment also.

3.1. New Perspectives on l\1aintenance in the Context of Process Programming.
Clearly process-centered environments. place new and demanding constraints and

requirements upon environment builders [Gamal 88-b,c]. We now summarize some of
these requirements and constraints.

Explicit process representation. A process environment must contain an expli­
cit model describing the process that it supports, and must support interpretation (exe­
cution) of that model.

Incorporation of Humans. The environment must support the definition of the roles
of humans in the process (e.g. process organization and personnel, skills and education,
and the roles and methods of communication.)

Openness to augmentation by new object types and tools. "Tools" in the

- .s -

process programming con text are analogous to operators in classical programming
languages. Both the input operands and the output results of the operators are con­
sidered to be instances of types which must be defined in the process program. Thus
process programs must be expressed in a language which is type and operator extensi­
ble.

Persistent object manipulation. Objects must be stored and managed by an object
manager which incorporates a typing system, authorization access control, a locking
mechanism, and a storage system. The object manager must be able to update existing
persistent objects in accordance with new process changes to guarantee consistency.

Software processes have some other characteristics which make their support an
even more demanding challenge. For example, they execute over very long periods of
time, and they incorporate humans as execution agents. As a consequence an execut­
ing software process incorporates a learning process, which implies the need for con tinu­
ous evolution of the process, even during the course of its execution. Hence, a process
development support environment must be;

Customizable. The degree of support and leadership specified in a process program
may vary widely. The purpose of the process program is to specify and enforce only
that which the process programmer wishes to specify.

User-tailorable. Every individual involved in executing the process must be given
the facility to tailor his or her share within the higher level management-drawn frame­
work.

Incrementally implementable. Understanding of any process is usually gained
by experiencing it, making it particularly hard to completely specify the process before~
hand. This suggests that the process program is best evolved dynamically, and imple­
mented incrementally.

Dynamically adaptable. Effective evolution of a running process has to be done in
such a way that it does not cause the needless waste of software objects which have
already been developed and that minimizes human efforts by maintaining the process
execution history as well.

These characteristics demand the development of software processes which incor­
porate advanced maintenance techniques. These new techniques can be applied to
both process and product maintenance yielding more powerful and sophisticated
environments. These techniques provide new perspectives on software maintenance
activities and their support environments [Gamal 88-c] which are characterized as fol­
lows;

Process maintenance. A process may be maintained for the sake of its own
improvement, or to improve product quality.

Product-related process maintenance. In most cases the changed (maintained)
process is executed from scratch to produce new products which have important similar­
ities to the products produced before maintenance, but which have distinct desired
differences as well.

Static Maintenance. The static descriptions of both products and processes must
be subject to maintenance.

Dynamic maintenance. Iterative and continuous improvements to processes
are to be expected, even during the courses of their execution.

- 6 -

Execution history maintenance. Dynamic maintenance implies that existing per­
sistent objects must be updated in accordance with process changes to guarantee their
consistency with the changes and to take full advantage of earlier human efforts.

Product-related process history maintenance. Classically, the formalisms by
which the product is specified and the relations among the different objects of the pro­
duct are all considered key to guiding maintenance. Alternatively, maintaining the his­
tory of the reactivated process by changing the values of some of the previously
developed persistent objects it deals with, is a more appropriate and efficient method for
maintaining products.

The newly in traduced maintenance notions of process and dynamic maintenance
as well as the related ideas of history maintenance and product-related process mainte­
nance form the basis for the new software lifecycle paradigm shown in figure 1 -
namely, the process-centered paradigm [Gamal 88-c] which combines both maintenance
and development.

(
,.,----,~~~

(lnce)~on Valid\an~~
STATIC

PROCESS CYQ.E

~~ .. ~c:/CJ

PRODUCT CYCLE

EXEOffiON
(opel'lltion)

HISTORY UPDATE

" lncremenul
!nu:gration

DYNAMIC I '
PROCESS CYQ.E ~ J

Incremental lncremenul
Definition Production

\~~,-~::f)
Des1gn ___.., Ox:clcs

Figure 1. The Process-Centered Software Lifecycle.

3.2. Sotre Characteristics of a :rvfaintenance-Ba.sed Process Envirorurent.
Environments for supporting the maintenance of process programs will share some

of the characteristics of environments for classical application software, but will also
have to satisfy important new requirements. For example, where classical environments
might be quite useful even if they support only static maintenance, it is essential that a
process programming environment support both static and dynamic maintenance. In
attempting to meet these harder requirements, process programming environments will
have to incorporate some new tools that will be challenging to develop.

For example, the activity of coming to understand programs should be as
automatic and powerful as possible, and it should support rapid responses to user
queries. New sorts of analyses are required to support rapid reply to queries in the con­
text of dynamic maintenance. Query response must be based upon the analysis of

- I -

execution histories which must be kept up to date as execution of the process proceeds.
In addition, we expect that different types of users (e.g., workers and managers) will
each need to pose queries, suggesting that the responses might have to be different as
well.

New and difficult tools must also be developed to support the subprocess of assess­
ing and evaluating changes. Before confirming proposed changes, they must be shown
to be correct and consistent with other program structures and software objects. For
example, changing the type of a component of a software process operand (e.g. a
requirement element) may be relatively straightforward in a static situation. The
change is made, and affected programs are then recompiled and rerun. In a process
programming environment, however, one must expect that this sort of change will have
to be made dynamically-as the process program is executing. In this case it is neces­
sary to reevaluate the program code involved in producing that component as well as
code which is involved in relating it to other software objects. The execution history
must also be reevaluated to see if changes must be made to previously created per­
sistent instances of the operand type. Clearly it would be far easier to simply rerun the
process program after each such modification, but this is usually impractical or impossi­
ble. Thus a process programming support environment should incorporate a facility for
dynamic reevaluation. Reevaluation differs from reexecution in that it simulates the
execution of only those statements which have been affected by changes which have
taken place. This is a new sort of optimization which is necessary in order to assure
that dynamic main terrance can be done rapidly.

The essence of reevaluation is to assure that changes are consistent with the syn­
tactic and semantic constraints of the programming language as well as the pragmatic
constraints imposed by the nature of the problem. Language syntactic constraint viola­
tions are relatively easy to detect statically. However, many semantic and pragmatic
constraints are hard if not impossible to evaluate statically because of their dynamic
nature. This suggests that dynamic constraint checking (e.g., by means of assertions)
and dynamic constraint propagation are key techniques in dynamic process program
maintenance. It must be noted that even these dynamic checks can not guarantee
absolute correctness, as they can at best only assure consistency and correctness up to
the current point of execution. Proposed changes might still set up inconsistent or
incorrect behavior later on. Thus still further complex tool support is suggested.

A key capability of the tools and processes needed to support dynamic mainte­
nance is ripple effect analysis. Ripple ef feet analysis is essentially a recursive opera­
tion, which relies upon representations of the interdependencies of the various program
objects and those objects which have been changed. Some changes may be entirely
local, and have no effect on other program entities, while others may propagate widely
to eventually affect many other entities. Static ripple effect analysis seems to rest upon
relatively better understood principles and structures [Feldman 79, Hudson 86, Clemm
89], but dynamic ripple effect analysis seems far harder, and seems to require the need
for analyzing and adjusting execution histories. This seems to require the development
of difficult new tool technology.

To explain the differences between the two types of ripple effects analyses, let us
consider, for example, the result of changing the value of an object at some point in the
execution history. That may cause a ripple effect leading to the reevaluation of other
variables and the eventual reevaluation of flow of control predicates which may then
cause the execution of a different path through the program. Thus the environment
must detect when reevaluation has caused execution of a new path, and must then roll
back to the earliest deviation point, and restart execution from this point. It is even
possible that a change may cause execution of a new path which criss-crosses the old
execution path, raising the possibility of different rollback points. A specially devised
algorithm may be needed to select an optimal roll back point from which to resume

- 8-

execution. Looping causes even more serious problems.

Coarse grain module inter- relationship analysis is an excellent support for ripple
effect detection in classical static maintenance. Finer granularity is required in the case
of dynamic maintenance, however, especially for process programs, since this main te­
rrance may be requested by users who are working at different metalevels and different
levels of abstraction. Thus, what is considered to be an operator by some user, might
be a process to other users. For example, process program maintenance may necessitate
the replacement of a tool (operator) by another which may have either the same or
different semantics. Portraying the impact of such a replacement to different users
en tails different analysis and different user interface capabilities. Similarly type
definitions must also be expected to change periodically during the execution of a pro­
cess program. Consideration of the need to make such substantive changes during the
execution of process programs led us to decide that even the basic elements of program­
ming languages must be thought of as potential subjects of ripple effect analysis in a full
process programming support environment.

Retesting is another very important activity in the main terrance process. In classi­
cal static main terrance, regression tests, dynamic debugging, static analysis of the
changed program, and coverage tests are methods used for assuring correct changes.
Those techniques are not adequate to support dynamic maintenance, since dynamic
main terrance is carried out during the actual execution of the process. Supplementary
techniques such as history main terrance, execution monitoring, and dynamic constraint
checking are needed as. well.

Another requirement of a process programming maintenance environment which is
particularly difficult to satisfy is that it should be able to support main terrance of
software objects developed using different languages. Even for a single software pro­
duct, we must expect that various of its component objects, e.g. the requirement ele­
ments and design specification elements, are legal strings in different languages. Each
language has its own syntax, semantics, and constraints upon which similar mainte­
nance analysis could be done. Hence, ideally, the maintenance environment should sup­
port maintenance of software objects expressed in any language, given the language
definition. This last characteristic imposes severe restrictions on the design and imple­
mentation of the environment and on all of its components and tools. Environment
components must be built in such a way as to be language customizable. That is, gen­
eral tools must be built so as to employ given language specifications for customizing
generically built tools (e.g., by using operator overloading.)

In summary, the characteristics of a process programming main terrance-based
environment requires quite a different approach to, and perspective on, the maintenance
process as a consequence of the dynamic nature of the programs it is supporting. Figure
2 is a high level architecture describing the relationships among the different com­
ponents comprising Orbit, the proposed prototype for a maintenance-based process
environment. A more detailed description· of Orbit's architecture is given in section 5,
while Orbit's kernel and integration mechanism-Meteor-is introduced in the next sec­
tion.

4. J\1eteor- A Process l\1od.eling Forrmlism
and Environ.trent Integration lVfechanism

Orbit views the process of modeling and developing software processes as an ela­
borate maintenance process. We believe that almost all the problems encountered in
maintenance can be classified into two categories -problems related to program under­
standing, and problems related to studying the propagation and ripple effects of
changes. Each of these types of problems is exacerbated by the unavailability in existing
environments of explicit representation of the program constituents and their connect­
ing and interdependence relations. Meteor supports the depiction of such relations in

I

l Object MJon""' I I Moolk.-/
(lunary ""'"'"l Evalu.MOf

HiJIDI')'Inlo.

- 9 -

t
L.'"'<:f irft:ria.ce CMaftefW\~ S'fru:m &at! 0"\1)

I
I l'l'o:l- I I Pl'«l-

I
1'1'1 PP1

~ I T'hru!..ao/
1n11HV\JI&LOI' ""

MaeorSti'\J.Cl!le

T .:::~e~, ,..~f''U~· IU

l
I Elt'flfCRTtCfH dd'UH'J'

Sut.c Corutrutt
¥~IliON

I I l F...xceptial ==)I· Hind""

E1ecuuoo lr\fo
t "' "" +

lr1Lerpr4ff I

Figure 2. Orbit's Architecture for Executing and Monitoring
Meteor Process Models.

I

I

I

I

different views and on different levels of abstraction in order to facilitate both static and
dynamic maintenance of the model. Once the process model (program) is designed and
its interdependence relations are established (hopefully from reusable process com­
ponents), Meteor provides a mechanism for automating the propagation and analysis of
changes applied to the model or its constituting entities. This is a considerable mainte­
nance (and development) aid.

In fact, each of the various existing software process modeling methods is special­
ized to support a specific domain and view. Petri net-based models, for example, are
used in the analysis of dynamic behaviors of concurrent processes [Peterson 81], while
state machines (which in some cases are equivalent to Petri nets [Reisig 85] are good
representations of program state evolution but they do not indicate how a transition is
executed. On the other hand, CORE [Mullery 79] and SADT-based mechanisms [Ross
77] provide support for the static specification of environment components, but have a
naive interconnection dependence representation model. Dataflow diagrams are another
static modeling facility which completely lacks the notion of controlling the flow of data
which we consider essential for process modeling. The interconnection and dependence
information in VDM-based systems [Terwilliger 87] are totally implicit, and hence the
complex task of understanding such relations is the user's responsibility. Process model­
ing needs powerful capabilities which allow viewing of the process from different per­
spectives and at different levels of abstraction. It also requires integrating both static
and dynamic modeling techniques in to a single and uniform technique. Meteor provides
such a considerable and powerful modeling mechanism.

- 10 -

The brief introduction to :Vfeteor given in this section is aimed at showing how
~fete or provides a new paradigm for environment integration which is based upon expli­
cit modeling of the underlying process. In these models, the different roles of the
environment components are specified and instances of these specifications are in tercon­
nected in a simple manner to compose the program describing the process. User
actions may cause automatic activation and execution of one of the processing cycles of
the process, if these actions are execution requests. However, if user actions take the
form of process main terrance requests, the model will automatically adjust itself to the
changes requested and propagate the effect of these changes to maintain the previous
execution history of the process.

Actually, i'v1eteor is a programmable virtual machine for modeling and interpreting
software processes. Process components (e.g. tools and humans' roles) communicate
via flowing information carriers which capture properties of objects and store them in a
powerful programmable common object base. It also controls the versions of objects
produced by processes by maintaining the history of the properties of these objects. In
fact, both the object base and the processes are all represented (simulated) in a com­
mon internal structure which explicitly represents most of the relations interconnecting
process components and objects, and provides them with automatic maintenance facili­
ties. Hence, there exist no actual bounds, at the interpretation level, separating any of
the environment's components. In addition, both foreign and specially designed tools
are treated equally in_ this system.

A brief description of Meteor, with a few elaborations where most needed, follows. A
complete description of Meteor can be found in [Gamal 89].

4.1. Introduction to ~teor.
Meteor bases its modeling techniques on an adapted version of dataflow architec­

tures [Thakkar 87] which, in eliminating unnecessary statement orderings, do a good job
of showing the concurrency which is one key characteristic of software processes. For­
tunately, dataflow diagrams had been proven [Kavi 87] to be equivalent to Petri nets
[Peterson 81] for which there exists a large body of theoretical work [Reisig 85]. Thus
we can draw upon this work in proving properties of the models built with Meteor.

Meteor models are composed mainly of two classes of components - objects and
relations. Objects are interconnected by the appropriate relations. Relations are
represented by frames which are programmable representations of the various relations'
properties. All frames have input and output ports, and an object (or a frame instance)
may be connected to any of the input or output ports of any other frame instance by
means of a unidirectional pipeline. The direction of the pipeline determines the direc­
tion of flow of information carriers (tokens) from one node to the other in the model
net, formed by the frame instances and connecting pipelines. Token flow is controlled
by control constructs which conditionally synchronize and manage token routing and
flow. Frame ports are typed so that when a composite token is received, an automatic
coercion process takes place to filter out unwanted information. Ports are considered
storage places whose ordering algorithms are predefined as part of their type definitions.
They store tokens until their frames are ready to process those tokens.

An informal description and further refinment of Meteor's components are given in
the next section. Figure 3 shows a simple example, the details of which are explained in
Section 4.3. In this figure a Meteor model expressing the workings of a procedure "max"
which computes the maximum of two values is shown. The "execution mode" of this
model is programmed such that the "<" frame executes once it receives both tokens at
its input ports. Those tokens, actually, carry all properties of the corresponding objects,
e.g. value and type. In this example, the "<" frame is assumed to produce either a
"Yes" or "No" token at its output port based on the result of the comparison. This

- 11 -

o.oun- pqx:iiDel -- -· C<mii'OI

r=::J Fr..- (Aaioriw:a) 0 l'o!u

~ ot:.;ca c:::=::> D!nocUnc Ccotral
c-....:t

Figure 3. An Example of Modeling "ma.x" with Meteor Formalism.

token is then used as the condition for the control gates which manage the flow of data
to the "print" frames. To explain the model of information propagation, let us assume
that each of the objects "a" and "b" has two attributes, namely value and type. Both of
these attributes will flow through the whole net, however the control constructs will
allow only one "print" frame to fire and execute. Since only the "print" frame needs
value attributes, its input port will automatically detect and keep the attribute that is
needed and filter the other one out. The importance of this model is not simply that it
models the workings of the max function, but that it also models relations and depen­
dencies which can be used to indicate all changes which must be made if certain
changes to max (e.g. changing the types of its operands) are to be made.

4.2. Inforrml Desc.ription of N.Eteor Ingredients.
A frame contains a pre-programmed set of preconditions (firing rules) each of

which is associated with an action which will be performed whenever this condition is
satisfied. The frame fires by executing the actions associated with all the satisfied con­
ditions in a predefined priority order. These conditions are defined in terms of the
existence of specific information types at the frame input ports. The actions in the first
prototype of Meteor are not restricted to a specific syntax or semantics, instead they are
simple procedure/function calls. Frame firing may result in producing a new set of
tokens at its output ports which will then be broadcast through the network of frames
by means of the connecting pipelines and under the control of the control constructs in
the network.

- 12 -

For example, when a token is produced at the output ports of object "a" of Figure
3. it automatically propagates through all the connecting pipelines to the input ports of
both the "print" and "<" frames, according to the pre programmed communication con­
ventions of the pipeline. It should be noted that other modeling systems, such as SADT
[Ross 77] and CORE [Mullery 79], provide similar capabilities for modeling systems by
using frame like structures. However, their specifications and structures are not
in ten ted to execute, and hence the semantics of their models are purely static.

A "\feteor object is a frame with an associated state. Every object has its own con­
trol methods to manage accessing its state as well as the state's history (versions.) An
object's input port accepts tokens carrying property change information which is then
used to update the object state and to generate appropriate output tokens to broadcast
the change over the net. Thus every object is able to meet its own object management
needs internally. Consequently, this approach does not mandate a single strictly
specified object manager with limited and predefined capabilities, but rather allows the
user to easily build and expand object management capabilities using the same method
and structure which are to be used in modeling the process itself.

Tokens are used as information carriers to transfer information from one node to
another in the model net. They take the form of a collection of attributes (the
object's properties) with an indication of the recent actions (e.g. changed, deleted, etc.)
to which the destinations are assumed to react. Because component types, such as
frames, can be defined in isolation with no previous knowledge of how their instances
are going to be connected, a token attribute representing a single object property may
not always be understood at a destination port, and hence may automatically be
filtered out. This actually matches the way maintainers usually think 1 and improves the
model's understandability and modifiability. It also makes the component definitions
highly reusable.

The communication model of Meteor is unlike other message passing systems as
the communication partners have no predefined agreements on the message formats. It
also differs from the object-oriented model of communication (e.g. in Smalltalk [Gold­
berg 83]) in which all objects are allowed to communicate with all other objects that
understand their messages. These systems, theoretically, do not restrict communication
to a-limited set of objects and therefore allow malicious objects to be very disruptive.
Maintaining and debugging such systems are not easy tasks. Pipelines are the major
communication method in Meteor models. Although a pipeline is a unidirectional infor­
mation flow channel, two-way communication can be provided by defining a pair of uni­
directional pipelines. The method of communication carried out by those pipelines can
be dynamically chosen from among several preprogrammed methods, e.g. remote pro­
cedure call, direct call, or token memory sharing. Such flexibility of communication
enables the execution agents (e.g. frames) to be modeled on different processors of a
pipelined machine or a network, or even by a separate active process on the same
machine. This, in fact, matches our observations about models of software processes,
and is consistent with our belief that humans should be considered to be execution pro­
cessors.

Software processes need to control and synchronize the activation of their com­
ponents. Every traditional programming language has its own paradigm of explicit or
implicit control, and so should process programming languages. However, we believe
that explicit control is more appropriate for modeling purposes, as this eases the model
prototyping process and simplifies prototype evaluation and tuning. Meteor provides a
primitive set of control constructs together with a set of combining operators which

1 We believe that maintainers usually start by localizing their understandings and analyses be­
fore building a full model of their program. Delocalization is then gained by following intercon­
necting relations (Letovsky 86].

- 13 -

allows the user to expand and tailor the set of control constructs. Interestingly. this
modeling approach draws heavily upon primitives used in logic circuit design. For
example, conditioned gates control the flow of tokens in 1- .M (multiplexors), ~1-1
(demultiplexors), or M-M (a combination of both) input-output gates. The conditions
are logical expressions concerning token existence in specific places and ports. In addi­
tion, every component, frame, and control construct, has a condition port which plays
an important role in deciding on the execution of a component. To explain, the tokens
generated at the output port of object "a" of Figure 3 flows to both "<" and "print"
frame input ports. However, although the firing condition of the "print" frame are
satisfied, the frame will not execute until its control condition is satisfied, and this is
determined by the .. decision" component. These condition ports use a three-valued
logic in which an undefined state is complementary to the Yes/No states. When a
frame receives a Yes condition it starts checking its firing conditions. When it gets a
No condition, it automatically disposes all the tokens available at its input ports. It
keeps busy waiting until any of these conditions occurs.

Meteor also recognizes the need for constraint propagation and consistency verifi­
cation. Object management systems need to maintain the consistency of their object
bases in accordance with a predefined set of local constraints. On the other hand, the
continuous evolution of process models, especially during the course of their execution,
requires constraint verification after every transaction not only for the object base but
also for the model structure. Every frame and object can specify its own set of con­
straints regarding its internal consistency and its connectivity. It may also impqse some
restrictions on the overall model structure. The former type of constraint is expressed
in predicate calculus and is manipulated locally. However, the latter type is expressed
in temporal logic and is handled globally by the underlying system interpreter.

Figure 4 shows the major phases of a Meteor model llfecycle-type definition,
model (object manager and process program) construction, instantiation, and interpre­
tation.

Process Type

Static Instance

Figure 4. A Simplified lifecycle for Meteor Models.

Process
Interpretation

Eventually, the process model including all its execution state history is stored in a pro­
cess library. It then may be reactivated for product-related maintenance. This cycle
may be interrupted at any time for maintenance purposes. A detailed description of
each of these phases, together with the discussion of their roles in supporting process
modeling according to our dynamic view of the process-centered life cycle paradigm, can

- 14 -

be found in [Carnal 88-d].

4.3. An Example.

We now show how the :'vfeteor formalism aids the main terrance process by
automating change propagation and constraint verification. The example in Figure 3
shows a Meteor model of the "max" function. We now show how equivalent models can
be automatically generated. If evaluation metrics exist, the best of these models can be
automatically selected. This example will also show the benefits of Meteor for mainte­
nance by showing how it supports the automatic propagation of change requests, and
the concept of dynamic maintenance. Finally, the "max" model is used to demonstrate
blackbox reuse [Carnal 88-c] by developing a model for "Max", the function that com­
putes the maximum value of an list of objects.

Process l\1odeling. Figure 3 shows the representation of the semantics of "max"
using predefined frames (" <" and "print") and control constructs. Frame types are
expected to be defined from the specifications of the process/programming language
used, while the definitions of control components are constructs of the Meteor formal­
ism. Compound constructs, for both activities (frames) and control, can also be user
defined. The semantics of the model can then be transformed into the equivalent
pseudo code shown. Upon receiving input tokens representing the availability of the
input parameters, the model executes as described in the previous section.

If the user decides to use a model of the same function, having a single exit, the
model shown in Figure 5.a might be built. An optimization algorithm might even be
used to eliminate both ":=" frames, and then generate the model shown in Figure 5.b
which is equivalent to the conditional expression which might be written in C. Again,
an automatic transformation can further refine the 2-1 gate into two 1-1 gates to result
in the equivalent model shown in Figure 5.c which is almost identical to the one we
started with, shown in Figure 3. Appropriate evaluation metrics can be employed for
selecting the best of these models. Of course, several other equivalent models can be
developed using different frame definitions.

rvfaintenance. Several kinds of maintenance and change requests can now be
considered. Some of these requests may require changing some properties of objects,
others may entail changing the model's structure. We now give some examples.

Assume that there are only two object properties for "a" and "b" in the "max"
model shown in Figure 3, namely value and type. Now consider a maintenance request
to change the value of object "b". For simplicity, let us assume a request to change the
value in the current state rather than in any of the historical states. This change is
represented by a request token which is imposed at the input port of "b "'s representa­
tion. Object "b" studies the effect of such a change on its properties and creates a
new version of the changed properties. The result is then broadcast by the release of a
token from its output port to the rest of the net. When this token reaches the input
port of the "<" frame, that frame reacts. Note that the reaction of the frame in the
context of this maintenance view should differ from its reaction in the normal execution
view. In the change view the frame firing rule is programmed to require only one of its
input ports to be enabled by a change request token, while in the execution view it will
require both inputs to be enabled. When the port connected to "b" is enabled, the
frame fires and pulls down the appropriate old value of "a" which is then compared with
the new value of "b" and the result propagates. It should be noted that whenever a
new value is found equivalent to an old value in a maintenance view of a model, token
generation and propagation will stop. So if, for instance, the old value of "b" is found
to be equal to the new one, the object "b" will not broadcast any tokens and no further
propagation will take place.

- 1 .s -

Figure 5. Different Models for "max".

Now consider a change request which asks for a change to the type of "b ". In this
case the value of "b" also may be affected and hence both of these properties will be
broadcast. The "<" frame may be programmed to include type verification as part of
its local constraints. The model will then behave as before if there are no violations.
However if some constraints have now been violated, an error token must now be emit­
ted. This may, for example, prompt the user and might cause the whole change
request transaction to be reconsidered.

The program structure may be maintained by replacing, deleting, or adding any of
the model components (including connecting pipelines.) Every component must be

- 16 -

programmed for the appropriate reaction to each of these kinds of change. For exam­
ple, if the "<" frame in our example is replaced by a ">" frame to generate a "min"
function model instead, the maintenance metalevel (see [Carnal 88-d]) to which both
frame types belong will automatically take the appropriate action. This action is usu­
ally to release a set of tokens locally in the model, and then propagate them to update
the execution history. So, in our example such a change will require pulling the
appropriate values of both "a" and "b" down starting at the execution state at which
the change is applied, and continuing execution as described earlier. Changes like
disconnection, connection, addition, and deletion are treated similarly.

Figure 6 shows a model which demonstrates blackbox maintenance.

print

Figure 6. Meteor Model for "Max".

A model of a procedure which prints the maximum value of a list of objects is developed
using "max". A new frame "Max" is defined which abstracts "max" into a single frame.
"Max" has a queue type input port which will be connected to the list. "Max" will pro­
cess one of the tokens in its input port at a time. No output will be printed except
upon consuming all the tokens in the queue. It must be noted that in Meteor an
undefined state is a real state which is represented by the nonexistence of tokens. So,
"Max" can be programmed to print the value of the input token if the other port is in
an undefined state.

This example indicates the use of Meteor as an environment integration mechan­
ism. It shows not only how Meteor can integrate all tools and subprocesses through a
common object base in which all objects are stored and managed, but also how it links
all of these subprocesses in a uniform way for smooth information flow. Every subpro­
cess may be abstracted into a single frame and connected to the other subprocesses.

- 17 -

Different abstraction levels as weU as different model views are also supported. The
independence of the component definitions and the information flow model of Yleteor
simplifies the development and integration of even foreign tools and subprocesses.

5. The Architecture of the Orbit Enviroillrent Prototype
The Nfeteor formalism has been found to be a powerful and flexible aid in model­

ing internal representations of classical application programs. It not only allows explicit
pictorial representation of all implicit interdependencies and program relations but also
supports the automation of change propagation. In fact, the Meteor representation pro­
vides the right support for process environments having such properties as dynamic and
incremental adaptability, reusability of components, and new tool incorporation, as
described in [Gamal 88-b,c]. Although Meteor provides the right mechanism for build­
ing such application environments, it itself needs a support environment.

Orbit is a prototype for a meta environment to support developing and maintain­
ing process environments represented by the Meteor modeling formalism. It is designed
around the environment requirements described in section 3. The Orbit design bor­
rows features from earlier, more classical environments, to elegantly integrate applica­
tions and their environments into a single space allowing the user to manipulate the
structure of both types of programs - process and application - without decreasing
their portability. This is done by using the Meteor formalism.

5.1. High Level .Architecture.
Before describing the environment structure and the semantics it provides for

modeling processes, we briefly discuss the meta-process underlying the development of a
new process environment and the interactions and roles of experts in this process. Fig­
ure 7 shows a process environment production process. The meta-process starts by
defining the specifications of the application process based on available resources and
requirements. These specifications are then compared against existing processes in a
process library. The optimum process is then selected and statically maintained to fulfill
the new requirements. An instance of this process can now be activated, and the pro­
duct cycle starts (see Figure 1 for the process-centered lifecycle.) Tools, according to
process programming, are considered as operators in the classical programming sense.
New tools can be easily integrated into an application process after their semantics are
described using the Meteor formalism. This formalism specifies the operational require­
ments of the tool as well as some maintenance-related knowledge (see section 8.) Con­
tinuous monitoring and evaluation can then be used to dynamically adapt the process
to achieve optimum results. All of these activities are done incrementally so that they
can be employed for both the static and the dynamic cycles of the process-centered
lifecycle.

This process can start even with an only partially defined specification, such as a
high level process outline. For example, Figure 8 shows how experts at different levels
can interact with each others. When a higher level expert modifies the process at his or
her level, other appropriate experts will then be prompted for dynamic incremental
adaptation of their processes. This is typically how processes are developed through
maintenance. The explicit definition of the roles, skills, and knowledge levels of experts
is a step towards increased process automation. The application of expert knowledge
seems effective in augmenting partially understood processes.

Orbit will also be able to readily support the incorporation of new tools into pro­
cess environments, whether or not the tool was produced under Orbit-like support.
Figure 9.a illustrates this. An example of a plausible structure of a two way translation
system may be as shown in Figure 9.b. Program portability is supported because once
such translators exist, a program developed outside Orbit may be easily integrated.
Furthermore, this approach provides a highly integrable multilingual environment

D

~etna.~~t.ic..< o(
fore'il' IDOls

Toolfl'ypc
Stor;

bwllegcnt ~~ (ll•un&A/Expctt Syoocm)

- 18 -

Figure 7. Abstract Model of Orbit's Underlying Process.

Nogoti•ti~ 1

Descendent Level

Figure 8. Orbit's Model of Incremental Dynamic Implementation and Adaptation.

- 19 -

User

I
Program Editor

Translator (Incremental)

Mctwr ssr--C-In-ti~-T-~-en-t':t_)_r....,;;~o~
Translation

rules

Figure 9.a. Two-way Translation for Meteor Models
and Process Programs.

which easily incorporates foreign tools. It also generates highly portable application
environments.

A process engineer or an expert may interact with Orbit in variety of ways. As
shown in Figure 2 every process engineer can maintain his or her own view and abstract
level of a process by maintaining either of its model representations - process program
code in some textual representation or the unique representation of the Meteor internal
structure formalism through a monitoring facility. Whenever an incorrect structure or
inconsistent execution state is encountered due to either a faulty design or a change
request, exceptions will be raised and appropriate parties will be informed. Mainte­
nance requests are specified as nested transactions. At the end of every transaction or
maintenance session, both the process model and its history of execution states are
analyzed against their preprogrammed constraints. ·Temporal logic is used in Meteor
to specify constraints on process execution histories. Appropriate constraint rules are
automatically invoked whenever a relevant parameter is updated, and Orbit modifies
state histories as needed. This maintenance of execution histories is an important and
unique Orbit feature.

As noted earlier (e.g. see Figure 1 and Figure 7), products can be maintained by
maintaining their developing processes. This implies that both the process and its pro­
ducts are considered to be integral components (see Figure 10) of Orbit. It also implies
that once a process is instantiated and activated it never dies or terminates, unless that
is explicitly requested (see Figure 11). Whenever a process description is needed to
carry out a certain task, a new process instance will be created and activated. After

lang. spec

- 20 -

source code
analyzer

Process Model
Specif~eatiOilS

source code

Type
Declaruioos

Object
Deflllitioos&
Instantiations

Figure 9.b. A Tool Kit Environment to Support the Translation Process.

finishing its programmed task, the process instance together with its products must be
stored in a process store and kept in an idle state waiting for reactivation for product
maintenance. Thus an execution state history is part of a process instance. This model
unifies the definition of both classical programs and processes, in the sense that data
objects never outlive their programs. Note that a process reactivation may lead to
automatic reactivation of several other coprocesses which are all involved in supporting
a higher level process. This is due to the interconnection of products and their
processes as is shown in Figure 10. On the other hand, another instance of the same
process program may also be instantiated for a different application or it may even be

PRODUCT F.XECUllOH
l£3ULT

- 21 -

Figure 10. Process Models and Their Products are a Single Integral Entity.

statically maintained to produce a different version of the process description.
A simplified structure of Meteor, the central component of the meta-environment

"Orbit" which supports process development/maintenance, is shown in Figure 12. Three
main stores of information - a tool and process definition library, an object history,
and a process model- are each incrementally managed by a separate manager, yet all
are kept formally consistent. The Meteor formalism is used to represent stored informa­
tion for each store. Any incremental environment modifications are directed to the
appropriate maintainer (manager) of each of these stores for evaluation, checking, and
integration. Modifications to any of these stores may automatically trigger other

New VcmCIDicl
~TY'J'M

(tJpaD requa11 anly)

- 22 -

Figure 11. A Model for Dynamic Instantiation, Execution, Retrieval,
and Maintenance of Meteor Models.

actions which may propagate to other stores depending on the interconnection of the
process model components and their semantics. Detailed descriptions of each of these
stores and how they define the objects with which they deal are omitted here, but can
be found in [Gamal 88-d].

Finally, it is worth noting that we consider the user interface to be an important
environment integration component. The user interface descriptions for every subpro­
cess in a process environment are assumed to be defined by the tools operated by these
subprocesses. However, it is important that the user must feel no differences when mov­
ing among the different subprocesses, because of differences in their user interfaces.
Meteor supports this by using its internal representation formalism at the lower levels to
represent the appropriate interfaces to various tools. A similar mechanism (e.g. Chiron
[Young 88]) which is outside the scope of this paper must exist for higher level user
interfaces.

- 23 -

Process Program

Model
lrucrpret.er

(Virtual machine)

Figure 12. The Architecture of Meteor's Interpreter and Support.

6. Conclusions and Future Work
We will continue this research in a number of ways. Although we have modeled

several programs in both the process and application domains using Meteor's formal­
isms, we expect to continue developing more complex models which will lead to further
elucidation of software process modeling, and to better understanding of the different
approaches to it. In developing more process models we will move in three separate
directions. We will develop process models to describe a wider range of software
processes, such as requirement specification, design, and coding processes. We will also
elaborate the process models which we currently have to lower levels of detail in order

- 24 -

to make them more complete and to gain deeper understanding of how humans perform
such tasks so that we can determine those parts of a process which can be automated
by expert systems. These two directions will serve as a testbed for validating the ideas
presented here. They will also help us to improve the :Vfeteor formalism. Although
:VIeteor is a plausible visual process programming formalism, we feel that we still need to
create more formalized specifications and design a higher level language front end which
will allow us to capture Meteor formalisms in code. So, we will also try to use these
models to understand how users like to interact with the system and how they like to
specify their processes so that we can develop a user-centered process programming
language which captures the lVfeteor formalism.

:Vfeteor has been developed in C++. In addition, we are also beginning the
development of an Orbit prototype. vVe will attempt to validate the ideas which we
presented here, especially those related to our new maintenance perspectives and to
using advanced maintenance techniques in development, as product-related process
maintenance is an essential goal of this research. We also want to investigate the power
of Meteor as an environment integration facility and virtual machine. In addition,
although the current implementation of Meteor is running on a single processor
machine, the inherent concurrency support characteristic of Meteor encourages us to
consider studying its implementation on an MIMD machine or computer network.

Acknowledglrents
The ideas described here have been developed over a period of time. The authors

have profited considerably from many useful conversations and discussions with a
number of colleagues. Numerous discussions with Dennis Hiembigner, Bob Terwilliger,
Stan Sutton, Mark Maybee, Xiping Song, and Fathy Eassa have all been quite useful in
shaping these ideas. Conversations with Bob Balzer and Stu Feldman were also of great
importance in improving our ideas.

In addition, the authors wish to acknowledge the financial support for this work
which was provided by the Defense Advanced Research Projects Agency, through
DARPA Order #6100, Program Code 7E20, and which was funded through grant
#CCR-8705162 from the National Science Foundation. Additional funding for this
work was provided through National Science Foundation grant #DCR-8403341.

- 25 -

References

[Adler 88) ~1. Adler, "An Algebra for Data Flow Diagram Process Decomposition", IEEE Transac-
tions on Software Engineering, Vol. SE-14, No.2, February 1988.

[Arango 85] G. Arango, I. Baxter and P. Freeman, "Maintenance and Porting of Software by
Design Recovery", Proceedings of the Conference on Software Maintenance 1985.

[Birrell 86] ~. Birrell and ~f. Ould, "A Practical Handbook for Software Development", Cambridge U niver­
sity Press, 1986.

[Clemm 89] G. Clemm and J. Osterweil, "A Mechanism for Environment Integration" to appear m
TOPLAS, 1989.

[Concepcion 88] A. Concepcion and B. Zeigler, "DEVS Formalism: A Framework for Hierarchical Model
Development", IEEE Transactions on Software Engineering, Vol. SE-14, No. 2, February 1988.

[Dowson 87] M. Dowson, "Iteration in the Software Process: Review of the 3ed International Software
Process Workshop", Proceedings of the 9th International Conference on Software Engineering, 1987.

[Fay 85] S. Fay and D. Holmes, "Help! I Have to Update an Undocumented Program", Proceedings
of the Conference on Software Maintenance 1985.

[Feldman 79] S. Feldman, "Make - a computer program for maintaining computer programs", Software
Practice & Experience 9, 1979.

[Gamal 88-a] S. Gamalel-din and L. Osterweil, "A Plausible Software Maintenance Process Program",
Technical Report CU-CS-389-88, University of Colorado, Boulder, 1988.

[Gamal 88-b] S. Gamalel-din and L. Osterweil, "Software Maintenance as a Programmable Process",
Technical Report CU-CS-390-88, University of Colorado, Boulder, 1988.

[Gamal 88-c] S. Gamalel-Din and L. Osterweil, "New Perspectives on Software Maintenance Processes",
Proceedings of Conference on Software Maintenance, 1988.

(Gamal 89] S. Gamalel-Din , Ph.D. Thesis Dissertation, University of Colorado 1989.

[Goldberg 83] A. Goldberg and D. Robson, "Smalltalk-80: the Language and Its Implementation",
Addisson-Wesley series in Computer Science, 1983.

[Habermann 86] A. Habermann and D. Notkin, "Gandalf: Software Development Environments", IEEE
Transactions on Software Engineering, SE-12 No. 12, December 1986.

[Hudson 86] S. Hudson and R. King, "CACTIS: a Database System for Specifying Functionality-
Defined Data", Proceedings of the Workshop on Object-Oriented Databases, 1986.

[Kavi 87] K. Kavi, B. Buckles, and U. Narayan, "Isomorphisms Between Petri Nets and Dataflow Graphs",
IEEE Transactions on Software Engineering, Vol. SE-13, No. 10, October 1987.

(Letovsky 86) S. Letovsky and E. Soloway, "Delocalized Plans and Program Comprehension", IEEE
Software, Vol. 3, No. 3, May 1986.

[Mullery 79} G. Mullery, "CORE- A Method for Controlled Requirement Specification", In Proceedings
of the 4th International Conference on Software Engineering, 1979.

[Neighbors 84] J. Neighbors, "The Draco Approach to Constructing Software from Reusable Com­
ponents", IEEE Transactions on Software Engineering, V. SE-10 No.5, September 1984.

- 26 -

[Osterweil 86] L. Osterweil, "A Process-Object Oriented Centered View of Software Environment Archi-
tecture", Technical Report CU-CS-332-86, university of Colorado at Boulder, 1986.

[Osterweil 87] L. Osterweil, "Software Processes are Software Too", Proceedings of the 9th International
Conference on Software Engineering, 1987.

[Peterson 81] J. Peterson, "Petri Net Theory and the Modeling of Systems", Prentice-Hall, Inc., 1981.

[Reisig 85] W. Reisig, "Petri Nets: an Introduction", Springer Verlag, 1985.

[Ross 76] D. Ross, "Structured Analysis (SA): A Language for Communicating Ideas", IEEE Transactions
on Software Engineering, Vol. SE-3, No.1, January 1977.

[Sorenson 88] P. Sorenson, et al, "The Metaview System for Many Specification Environments", IEEE
Software, March 1988.

[Stenning 87] V. Stenning, "On the Role of an Environment", Proceedings of the 9th International
Conference on Software Engineering, 1987.

[Teitelbaum 81] T. Teitelbaum and T. Reps, "The Cornell Program Synthesizer: A Syntax-Directed Pro­
gramming Environment", CACM Vol. 14, No.9, September 1981.

[Teitelman 81] W. Teitelman and L. Masinter, "The Interlisp Programming Environment", IEEE Com­
puter, Vol. 14, No.4, April1981.

[Terwilliger 87] R. Terwilliger, "Encompass: An Environment for Incremental Software Development Using
Executable Logic-Based Specifications", Ph.D. Thesis, University of Illinois at Urbana-Champaign,
1987.

[Thakkar 87] S. Thakkar, "Dataflow and Reduction Architectures", IEEE (selected reprints), 1987.

[Waters 82] R. Waters, "The Programmer's Apprentice: Knowledge Based Program Editing", Transac-
tions on Software Engineering, V. SE-8, No.1, January 1982.

[Young 88] M. Young, R. Taylor, and D. Troup, "Software Environments Architectures and User INterface
Facilities", Transactions on Software Engineering, V. SE-14, No.6, June 1988.

